SNARc v1
Manual for Researchers

Running SNARc

Version 1 of SNARc runs as a standalone executable. It requires no installation. It accesses files at runtime, so the entire contents of the directory need to be copied to the running machine as is. SNARc runs on the .NET framework so might have some .NET dependencies, I’m not sure yet and haven’t tested it on a machine that might lack these dependencies. You might need the .NET redist stuff.

Data & File Management

The current version of SNARc is designed to be simple to use and relies on convention rather than settings.

User Data

Every time the software is run a new User Data file is created. It is continuously updated throughout runtime, so it is always complete. The user can leave at anytime and the data will be intact and valid. The file tagged with the date and time of the interaction start. Inside the file is also a globally unique ID. The file is XML and human readable. When the software is exited, by whatever means, the current User Data file is effectively forgotten about by the software. The next execution will create a new GUID and therefor a new file. The /User Data directory will grow indefinitely while people are using the software. At some point I will add a seamless method to check that this folder isn’t too big and remove older files… this might incur access violations though, and so might require all userdata to be rolled into one massive xml file that can be edited rather than having to delete individual ones.

What is in the User Data?

There is no duplication of data, since the scenario is defined elsewhere, the user data file doesn’t contain anything that is already defined in the scenario. This means that the files are smaller but also that the User Data file is useless without a reference to the scenario that the user went through.
Scenarios all have a GUID, each User Data file references the GUID of a scenario. It also stores the date and time of the interaction. The data itself is really just a list of nodes visited by the user. On running the software a UserData object is instantiated, this establishes the root data in the file (which scenario, date and time etc.) Every time the user moves from one node to the next the data the user has inputted to the current node is captured (including the node identifier) and added to a list in the UserData object. This change triggers and automatic complete overwrite save of the object (ie. The stored file is updated.) This allows a post-hoc reconstruction of the users path through the scenario and what they typed in.
NB: UserData isn’t just used as a matter of record. It is also necessary to allow proper back functionality. In principal a user can arrive at a node from many possible nodes, so the only way to know which node they came from is to look in the UserData object. Each time the user moves back the UserData object is accessed to find which node the user was at. The proper presenter is instantiated and told to fill its UI from the user last node in the UserData object. NB: When the PopulateFromUserData() method is called on a presenter, the UserData object is told to RemoveLastEntry(). This means that the UserData isn’t told to drop its last entry until the presenter is populated. This might change, as I’d rather have a method in UserData like “PopLastEntry()” that returns the last HybridNodeData in its list and removes it.

NOTE: I don’t really like the way this works because although you can step back and the app shows you what you typed into that node screen, it also removes what was the last node (and is now the current node) from memory. So if you press back twice you arrive at a node and lose the node you skipped over. I would rather make this bilinear. So the algorithm will have to change… probably using an indexer.

Changing the Scenario

The Scenario is defined and stored in an xml file called scenario.xml in the /Scenarios folder. To change the scenario you simple overwrite this file. The application is hard coded to look for resources in the relevant folders (/Images, /Videos etc.) A scenario is a network of nodes. Nodes are fundamentally a means to present an image to the user. Most of the ‘content’ of the story is supposed to be in those images (as the application is designed around the presentation paradigm of a comic book.)
The basic node type is a StoryNode, but there are also: BubbleNode, LikertNode, QuestionNode, VideoNode. The data and UI representations of each of these are different, hence different types.
· StoryNode and Bubble node are very similar and the most used type. The presents an image, a content field, navigation options and an input hint. StoryNode presents a text box that the user can type into.
· BubbleNode replaces the textbox with two text boxes floating over the image (to be used as speech/thought bubbles.)
· LikertNode presents an arbitrary list of likert scales.
· QuestionNode presents just a question and a text box for the answer.
· VideoNode shows a video.
· BaseNode is the class from which all node types are derived. It defines some basic shared functionality.
Stuff in the works:
· SliderNode: This is like a LikertNode but uses a slider instead. This is in some cases better than discrete values.
· PaintNode: A space the user can draw onto. Probably using some library.
The scenario definition is a set of lists, one list for each node type. Each node has an ID and a target. The target is the ID of the node that the user should be directed to when they press next.
This gets a little confusing with navigation options. StoryNode and BubbleNode can present a set of 6 buttons that each redirect to an individual node (used for branching scenarios). When presenting a StoryNode/BubbleNode to the user SNARc hides the navigation options if they are empty, if there are navigation options set SNARc hides the next button. This might be a bit confusing because the StoryNodes always have a target field even if they have navigation options, it’s just that the target is irrelevant.
Generally the application will hide features that aren’t being used. So if there are no navigation options the buttons aren’t rendered, if there is nothing in the content field the textbox is invisible.
Nodes have an identifier that can be any string (it would be wise to just use lowercase letters, numbers, hyphens and no spaces.) A node having a target that is not a real node causes an unresolvable error, there is no way to deal with that at runtime other than to throw a missing thing screen.
Duplications of identifiers will cause unpredictable behaviour. It’ll likely route to the first instance of a node with the duplicated name. Or it might crash (some LinQ queries are optimized on the assumption that there is exactly 1 of a thing:
e.g. { nodes.Single(e => e.identifier == “whatever”); } would return an exception if there is more than one thing with identifier “whatever”.
Nodes can occur in any order and as many times as you like. Images can be reused in multiple nodes.
There must be one node called “001”, this is, by convention, the starting node. Nodes can be set with a target “end” if they are terminating nodes. There can be as many end node as you like.

Authoring a Scenario

You can write XML if you wish but there is an authoring application that makes it much easier. The app isn’t perfect but its far better than doing it by hand.

The Authoring app presents you with a set of tabs that correspond to the different node types. Each of these tabs is a list, just like the set of lists in the scenario definition file. You can add a new blank node to any of the tab lists. The list presents you with the identifier and target of the node, this is so that you can quickly(ish) edit the overall structure of the scenario. Click edit to see the contents of the node. This will open a new window.
NB: To ‘save’ the changes you hit the commit button. This doesn’t close the popup window but it does work behind the scenes. This is called ‘commit’ rather than ‘save’ because it doesn’t save the changes to disc, just alters the data in the applications memory. You have to use the save button on the main screen to persist your changes.
The authoring app has a standard Load / Save scheme. Hitting Save will overwrite what you are editing if you opened a file, otherwise it works like Save As. The app also remembers where you Loaded from between runs of the app, which is handy. You can directly Load scenario.xml, edit it and hit save if you wish.
As standard, files have to be specified with extension, so for videos and images, etc., include extensions. You don’t have to specify location as they are taken to be in the program file directories (/Images etc.)
NB: The authoring app has no explicit “create new scenario” function, it just happens when you run it. This is when a new GUID should be created for that scenario, this should work but it’s not something I have given much thought to since at the moment there is only one scenario.

Technical Stuff – How SNARc Works

[bookmark: _GoBack]SNARc uses a repository to access the scenario data. The repository is by far the messiest part of the application. The idea is all XML specific code is in the repository. The main application doesn’t really interact with any XML, and doesn’t care what the data is stored like.

When the app launches a new ScenarioRespository is instantiated, which deserializes scenario.xml. The repository can do things like track which is the current node, return whatever the current node is, return a node of a specific identifier, step back to a specific node etc.

The application uses a ModelViewController architecture. The MainWindow acts as controller. It asks the repository for a node. There is a set of ‘views,’ which in WPF are custom UserControls, each of which is designed to present a specific node type. I call these presenters. Their constructors explicitly require a node of a specific type, so they are effectively strongly typed to a node type. When the repository returns a node of some type its type is detected and a switch calls the constructor for whichever is the correct presenter. The presenter constructor plugs values from the node object into the UI (e.g. txtContent.text = node.content;) and all the UI hide/unhide logic.

The presenters have the normal event handlers for buttons, although these tend to route to other methods. The presenters also maintain a reference to the mainwindow (their parent) so that they can call navigation methods in it. This is because the MainWindow accesses the repository, the presenters only deal with 1 node object.

Next causes the MainWindow to ask the repository to find he next node, using a linq query, and pass it back.

All presenters implement an interface called IDataCapture. This ensures that when asked they can rap up the data in the UI into a HybridNodeData obect.

All presenters implement an interface called IPopulateFromData. The ensures that the presenter can take the contents of a HybridNodeData object and populate itself with whatever is in it (for going back.)

User Data Storage
The user can move through the scenario and visit an arbitrary sequence of nodes of whatever type. The User Data needs to represent this progression. The problem is that XML can’t keep a list of objects of different types, not even if they are all from a common base type. Rather than keep separate lists (like in the scenario) I use a concept called object hybridization. The aim is to allow XML to store a list of nodes of many node types.
There exists an object type called HybridNodeData. This has all the fields and properties from all the node types, plus a type field. This is like an AND combination of all the node types. It has the useful feature that it doesn’t duplicated fields, so for example all nodes have a .Content field, HybridNodeData also has 1 .Content field that is used regardless of the specific type being hybridized. This means it can hold content data from any type. It also means that the HybridNodeData will always contain fields that are left null, but XML doesn’t care, it just leaves them out. The type field is a string that contains an assembly name (e.g. WpfInteractiveComic.StoryNode). All this is done by extracting an interface from all the node types and implementing them all in HybridNodeData.

All node types implement the interface IHybridizable. This ensures that they can turn themselves into a HybridNodeData object when required.
HybridNodeData has the method “BaseNode Dehybridize()”. This uses the type field to turn the hybrid object back into a specific node type.
· UserDetails holds basic user information (like name and age).
· UserData extends UserDetails to include things relevant to scenario interaction.
· SelfSavingUserData extends UserDetails with functionality to allow it to serialize itself, so you won’t find any code in the app handling this.
· CryptoSelfSavingUserData will extend SelfSavingUserData to include seamless encryption of user data, but that isn’t finished yet.
With a view to making the app more researcher-friendly and seamless, the data storage classes include a ‘research variable’ field (actually there is an IResearchVariable interface that formalizes this feature), so that when authoring likerts or question nodes they can be explicitly assigned a variable name that maps to the variable names you would find in SPSS. Eventually there’ll be an app that can export the UserData to a table or SPSS file or spreadsheet.

Updates

19 March 2012
· Added an optional dialog that asks the user to select a directory for data storage. This is to get round folder access rights issues, i.e. the user can direct to a folder they can access and write into.
· Added a global Settings.xml file and an object to read it at runtime. Just instantiate a “SelfLoadingSettings” object, within it are the settings. “Settings” represents the data stored in the settings file. SelfLoadingSettings is a wrapper around Settings, it contains a copy of Settings deserialized at runtime when SelfLoadingSettings is instantiated.
· Tested the app on the terraces under the guest account. Works perfectly running from memory stick.
· Added ‘duration’ metric gathering to the UserData. The number of ticks the user spends on each node is now recorded.
· Added a delete button to the author software, seems to work but not sure its working as expected.
· Disabled logging to avoid network write collisions when running from multiple guest accounts. Implementation of Logger.SaveLog() is commented out. Will likely incorporate logging into user data.
· Added the local Mac Address to the User Data filename to further avoid network file access collisions. File title is now “User Data @ <DateTime> on <MacAddress>.xml”. If it can’t ascertain the Mac Address is should replace <MacAddress> with “Unknown MAC Address”… and run as normal. The Mac address is of the first network adaptor the app finds, not necessarily the one being used, its just a unique machine id.

20 March 2012
· Added a “Notes” field to all the nodes, intended to hold authors’ notes. Not presented to user. Stored in the scenario definition xml file.
· Added an autocomplete function to the image name text field in the authoring application. For this to work the app needs to know what images you intend to use, so it asks you to find the folder containing the images. It takes the names and populates a combobox that autocompletes as you type.

s s . s o ks o b drey s o o o
e e S e e T e g b
R R LT R
TV M A

D et

e o e g 0 s i

vy i o e i e U D e o s oy
el St e 4 i, T o et
IS MR TS SRS
R a0) A T b
et Sy e o e e St
PG M e e D s e iy
L% et o . s o 01 i e
e e ks
s 15 e S e e
R s g i 12

i .
8 e e bt s Ut B i vk e
T T U ..7.)7.’::.'.“
R T e
E T e T h T e
ST T
EEmE A
R

e
e
ERZmomIaE

